首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6942篇
  免费   8篇
  国内免费   23篇
航空   3561篇
航天技术   2528篇
综合类   28篇
航天   856篇
  2019年   41篇
  2018年   81篇
  2017年   54篇
  2016年   39篇
  2014年   114篇
  2013年   171篇
  2012年   137篇
  2011年   206篇
  2010年   151篇
  2009年   251篇
  2008年   309篇
  2007年   170篇
  2006年   167篇
  2005年   179篇
  2004年   162篇
  2003年   238篇
  2002年   135篇
  2001年   233篇
  2000年   140篇
  1999年   203篇
  1998年   220篇
  1997年   163篇
  1996年   207篇
  1995年   250篇
  1994年   242篇
  1993年   140篇
  1992年   159篇
  1991年   90篇
  1990年   86篇
  1989年   177篇
  1988年   74篇
  1987年   90篇
  1986年   69篇
  1985年   234篇
  1984年   173篇
  1983年   152篇
  1982年   170篇
  1981年   226篇
  1980年   76篇
  1979年   60篇
  1978年   65篇
  1977年   63篇
  1976年   48篇
  1975年   73篇
  1974年   48篇
  1973年   49篇
  1972年   59篇
  1971年   45篇
  1970年   50篇
  1969年   45篇
排序方式: 共有6973条查询结果,搜索用时 15 毫秒
11.
12.
13.
Energetic heavy ions are present in galactic cosmic rays and solar particle events. One of the most important late effects in risk assessment is carcinogenesis. We have studied the carcinogenic effects of heavy ions at the cellular and molecular levels and have obtained quantitative data on dose-response curves and on the repair of oncogenic lesions for heavy particles with various charges and energies. Studies with repair inhibitors and restriction endonucleases indicated that for oncogenic transformation DNA is the primary target. Results from heavy ion experiments showed that the cross section increased with LET and reached a maximum value of about 0.02 micrometer2 at about 500 keV/micrometer. This limited size of cross section suggests that only a fraction of cellular genomic DNA is important in radiogenic transformation. Free radical scavengers, such as DMSO, do not give any effect on induction of oncogenic transformation by 600 MeV/u iron particles, suggesting most oncogenic damage induced by high-LET heavy ions is through direct action. Repair studies with stationary phase cells showed that the amount of reparable oncogenic lesions decreased with an increase of LET and that heavy ions with LET greater than 200 keV/micrometer produced only irreparable oncogenic damage. An enhancement effect for oncogenic transformation was observed in cells irradiated by low-dose-rate argon ions (400 MeV/u; 120 keV/micrometer). Chromosomal aberrations, such as translocation and deletion, but not sister chromatid exchange, are essential for heavy-ion-induced oncogenic transformation. The basic mechanism(s) of misrepair of DNA damage, which form oncogenic lesions, is unknown.  相似文献   
14.
It can be noted that it is not simple double strand breaks (dsb) but the non-reparable breaks that are associated with high biological effectiveness in the cell killing effect for high LET radiation. Here, we have examined the effectiveness of fast neutrons and low (initial energy = 12 MeV/u) or high (135 MeV/u) energy charged particles on cell death in 19 mammalian cell lines including radiosensitive mutants. Some of the radiosensitive lines were deficient in DNA dsb repair such as LX830, M10, V3, and L5178Y-S cells and showed lower values of relative biological effectiveness (RBE) for fast neutrons if compared with their parent cell lines. The other lines of human ataxia-telangiectasia fibroblasts, irs 1, irs 2, irs 3 and irs1SF cells, which were also radiosensitive but known as proficient in dsb repair, showed moderated RBEs. Dsb repair deficient mutants showed low RBE values for heavy ions. These experimental findings suggest that the DNA repair system does not play a major role against the attack of high linear energy transfer (LET) radiations. Therefore, we hypothesize that a main cause of cell death induced by high LET radiations is due to non-reparable dsb, which are produced at a higher rate compared to low LET radiations.  相似文献   
15.
The Atominstitute of the Austrian Universities has conducted various space research missions in the last 12 years in cooperation with the Institute for Biomedical Problems in Moscow. They dealt with the exact determination of the radiation hazards for cosmonauts and the development of precise measurement devices. Special emphasis will be laid on the last experiment on space station MIR the goal of which was the determination of the depth distribution of absorbed dose and dose equivalent in a water filled Phantom. The first results from dose measurements onboard the International Space Station (ISS) will also be discussed. The spherical Phantom with a diameter of 35 cm was developed at the Institute for Biomedical Problems and had 4 channels where dosimeters can be exposed in different depths. The exposure period covered the timeframe from May 1997 to February 1999. Thermoluminescent dosimeters (TLDs) were exposed inside the Phantom, either parallel or perpendicular to the hull of the spacecraft. For the evaluation of the linear energy transfer (LET), the high temperature ratio (HTR) method was applied. Based on this method a mean quality factor and, subsequently, the dose equivalent is calculated according to the Q(LET infinity) relationship proposed in ICRP 26. An increased contribution of neutrons could be detected inside the Phantom. However the total dose equivalent did not increase over the depth of the Phantom. As the first Austrian measurements on the ISS dosimeter packages were exposed for 248 days, starting in February 2001 at six different locations onboard the ISS. The Austrian dosimeter sets for this first exposure on the ISS contained five different kinds of passive thermoluminescent dosimeters. First results showed a position dependent absorbed dose rate at the ISS.  相似文献   
16.
The problem of target motion analysis (TMA) has been the subject of an important literature. However, present methods use data estimated by a short time analysis (azimuths, Dopplers, etc.). For far sources, the nonstationarities of the array processing outputs, induced by the sources motion, may be simply modeled. This model leads one to consider directly a spatio-temporal TMA. Then new (spatio-temporal) data can be estimated. These estimates correspond to a long time analysis. Further, note that they are estimated independently of the (classical) bearings. In this general framework, the concept of source trajectory replaces the classical instantaneous bearings. Corresponding TMA algorithms are then studied. Then the study of statistical performance is carefully studied  相似文献   
17.
This study presents qualitative and quantitative data concerning gravity-dependent changes in the swimming behaviour of developing cichlid fish larvae (Oreochromis mossambicus) after a 9 resp. 10 days exposure to increased acceleration (centrifuge experiments), to reduced gravity (fast-rotating clinostat), changed accelerations (parabolic aircraft flights) and to near weightlessness (2nd German Spacelab Mission D-2). Changes of gravity initially cause disturbances of the swimming performance of the fish larvae. With prolonged stay in orbit a step by step normalisation of the swimming behaviour took place in the fish. After return to 1g earth conditions no somersaulting or looping could be detected concerning the fish, but still slow and disorientated movements as compared to controls occurred. The fish larvae adapted to earth gravity within 3-5 days. Fish seem to be in a distinct early developmental stages extreme sensitive and adaptable to altered gravity; However, elder fish either do not react or show compensatory behaviour e.g. escape reactions.  相似文献   
18.
A large amount of inedible plant material composed primarily of the carbohydrate materials cellulose, hemicellulose, and lignin is generated as a result of plant growth in a Controlled Ecological Life-Support System (CELSS). Cellulose is a linear homopolymer of glucose, which when properly processed will yield glucose, a valuable sugar because it can be added directly to human diets. Hemicellulose is a heteropolymer of hexoses and pentoses that can be treated to give a sugar mixture that is potentially a valuable fermentable carbon source. Such fermentations yield desirable supplements to the edible products from hydroponically-grown plants such as rapeseed, soybean, cowpea, or rice. Lignin is a three-dimensionally branched aromatic polymer, composed of phenyl propane units, which is susceptible to bioconversion through the growth of the white rot fungus, Pluerotus ostreatus. Processing conditions, that include both a hot water pretreatment and fungal growth and that lead to the facile conversion of plant polysaccharides to glucose, are presented.  相似文献   
19.
The wavelet filters of the conventional 3D multiresolution analysis possess homogeneous spatial and temporal frequency characteristics which limits one's ability to match filter frequency characteristics to signal frequency behavior. Also, the conventional 3D multiresolution analysis employs an oct-tree decomposition structure which restricts the analysis of signal details to identical resolutions in space and time. This paper presents a 3D wavelet multiresolution analysis constructed from nonhomogeneous spatial and temporal filters, and an orthogonal sub-band coding scheme that decouples the spatial and temporal decomposition processes  相似文献   
20.
A brief review of studies on simulation and control of a porous cooling process taking into account material transpiration is given. An approximated solution for an equation of the one-dimensional problem of fast ablation is also presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号